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Depinning of a domain wall in the 2d random-field Ising model?
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Abstract. We report studies of the behaviour of a single driven domain wall in the 2-dimensional non-
equilibrium zero temperature random-field Ising model, closely above the depinning threshold. It is found
that even for very weak disorder, the domain wall moves through the system in percolative fashion. At
depinning, the fraction of spins that are flipped by the proceeding avalanche vanishes with the same
exponent β = 5/36 as the infinite percolation cluster in percolation theory. With decreasing disorder
strength, however, the size of the critical region decreases. Our numerical simulation data appear to reflect
a crossover behaviour to an exponent β′ = 0 at zero disorder strength. The conclusions of this paper
strongly rely on analytical arguments. A scaling theory in terms of the disorder strength and the magnetic
field is presented that gives the values of all critical exponent except for one, the value of which is estimated
from scaling arguments.

PACS. 75.60.Ch Domain walls and domain structure – 05.70.Ln Nonequilibrium thermodynamics, irre-
versible processes – 47.55.Lh Flows through porous media

1 Introduction

The random-field Lenz-Ising model is one of the sim-
plest examples of random media, with applications far
beyond magnetic systems (for a recent review, see [1]). Re-
cently interesting nonequilibrium aspects have been stud-
ied, such as the field driven motion of a single domain wall
[2–9], domain coarsening in rapidly cooled magnetic sys-
tems, where the domain wall motion is curvature driven
[10], and hysteresis, with many interacting driven domain
walls [11]. Studies of a single driven domain wall were
found to describe fluid invasion in porous media [2]. These
studies fall into the large class of interface depinning prob-
lems, which also include charge density wave depinning,
contact line depinning, earthquakes, and domain wall de-
pinning in magnets [12,13]. In these systems, second or-
der dynamical phase transitions were found as the driv-
ing force F surpasses some critical threshold value Fc, at
which the interface becomes depinned, and starts to prop-
agate through the system at a velocity v ∼ (F −Fc)φ with
a critical exponent φ.

In previous work on a single field driven domain wall
in the random field Ising model in three dimensions, three
different modes of interface propagation close to the de-
pinning threshold were identified [7]: For weak, bounded
disorder, the marginally stable interface at Fc is facetted,
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for intermediate disorder it is self-affine, and for large dis-
order it is self-similar. In the “faceted growth” [2,3,7,9]
the interface propagates just as in the absence of disorder,
penetrating the medium completely, with a roughness ex-
ponent ζ = 0 at the depinning threshold. This type of
interface motion can occur in any dimension, but only for
a narrow, bounded distribution of random fields, not for
unbounded (Gaussian) distributions of random fields. The
existence of this phase is lattice dependent [8].

In the self-affine regime, which was seen in
3-dimensional simulations with bounded and Gaussian
distribution of random fields [7,14], neighbouring inter-
face segments proceed coherently, and the interface has
a roughness exponent smaller than one. Overhangs and
“bubbles” (i.e., uninvaded domains left behind by the ad-
vancing interface) occur only below a certain length scale
and can therefore be neglected on long length scales, where
the interface can be described by a single-valued function.
The critical properties of the interface near the depinning
threshold were derived analytically starting from a contin-
uum model with a single-valued function for the interface,
and performing a renormalization group calculation, and
ε expansion around the upper critical dimension which is
5 [4,5]. This ε expansion yields the roughness exponent
ζ = (5 − d)/3 for a d − 1-dimensional domain wall in a
in a d-dimensional system, which is argued to be exact to
all orders in perturbation theory [5], however, numerical
simulations show deviations from this prediction [6]. If the
renormalization group result ζ = (5−d)/3 is indeed exact,
it implies that d = 2 is the lower critical dimension, where
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the ansatz of an interface without overhangs at large scales
breaks down and conventional correlated depinning does
not occur any more. Anisotropies in the medium may give
rise to further depinning universality classes [15].

For strong disorder, the invading phase advances in a
percolation-like manner, following routes of particularly
high random field values. When the driving force is at the
depinning threshold, the invading phase penetrates only
a vanishing volume fraction of the invaded medium, just
as a spanning cluster in percolation theory [2,7]. Numeri-
cal results for the fractal dimension of the invaded volume
and the external hull of the interface suggest that this
system is in the same universality class as uncorrelated
site percolation [2,7]. When the disorder strength is de-
creased, the percolation pattern coarsens, and the thick-
ness of the percolation fingers increases and diverges at
the critical disorder Rc which marks a transition to con-
ventional (coherent, self-affine) depinning [2,7,8]. While
in three dimensions Rc > 0, in 2 dimensions simulation
results seem to indicate that this divergence of the finger
width occurs only in the limit of zero disorder (Rc = 0)
[2,8], suggesting again that d = 2 plays the role of a lower
critical dimension.

This result however so far is only an indication. Within
the numerical accuracy of the 2-dimensional simulations a
nonzero Rc could not definitely be ruled out, and the issue
is still controversial. While 2 is the lower critical dimen-
sion for the equilibrium random-field Ising model, there
is no obvious reason that this result should be transfer-
able to a nonequilibrium situation [16]. There are other
nonequilibrium problems with similar hurdles to establish-
ing the lower critical dimension. An example are hysteresis
loops in the 2-dimensional random-field Ising model with
many interacting interfaces. Numerical simulations, even
of rather large systems (up to 30 0002), seem to converge
towards zero critical disorder, but so far do not definitely
rule out the possibility of a phase transition at nonvanish-
ing disorder value either [11].

Another open question is whether the type of corre-
lated percolation found for domain-wall motion in the
random-field Ising model does indeed belong to the same
universality class as conventional uncorrelated site perco-
lation. In fact, while the fractal dimension of the external
perimeter of a site percolation cluster is 4/3 [17], in agree-
ment with the dimension found for the magnetic interface
[2], the fractal dimension of the hull (which is the perime-
ter that one measures stepping along occupied sites) of a
percolation cluster is 7/4 [17], which is different from the
value 4/3 for the RFIM interface (see below).

The main purpose of this paper is to present new sup-
port for the conclusion that 2 is indeed the lower critical
dimension for the transition described above, with Rc = 0,
and to give analytical and numerical arguments that in
2 dimensions on sufficiently long length scales (even for
very narrow Gaussian distribution of random fields) the
interface propagates in the self-similar mode, character-
ized by site percolation critical exponents. In contrast to
previous simulations of the pinned interface where the de-
pinning point is approached from below, here it is ap-

proached from above with focus on the volume fraction m
filled by the invading phase as a function of the strength
of the driving force (i.e., the magnetic field). Since m van-
ishes at percolation-like depinning, but is nonzero at cor-
related depinning, it can be used as an “order parame-
ter” for the phase transition between the two behaviours.
Scaling forms for m, and the width and length and frac-
tal dimension of the interface, and other quantities, are
conjectured and tested numerically, and ultimately justi-
fied by a scaling theory. Analytical arguments based on
the properties of the domains of unflipped spins left un-
touched by the proceeding interface give strong support
for a phase transition at zero disorder. They also show
that the width of the critical region decreases towards zero
as the strength of the disorder vanishes. Mappings of the
model for several values of the parameters onto other per-
colation models with (supposedly) known values for the
critical exponents confirm that the growth of m above de-
pinning is characterized by the conventional percolation
exponent β = 5/36. The numerical data are compatible
with a critical point at zero random field, and reflect a
crossover from the percolation critical exponent β = 5/36
very close to depinning to β′ = 0 further away. The rough-
ness exponent characterizing the interface and the fractal
dimension of the interface are ζ = 1 and df = 4/3. Build-
ing on these results, we conjecture a scaling theory for the
critical behaviour in d = 2 dimensions in the limit of small
disorder. Except for one exponent, the exact values of all
other exponents can be postulated, and for the remaining
exponent, an approximate result is obtained from scaling
arguments.

The outline of the remainder of the paper is as follows:
in Section 2, the model is introduced. In Sections 3 and 4,
the numerical and analytical results are given. The final
section contains a discussion of the results and ideas for
further work.

2 The model

The random-field Ising model is defined by the following
Hamiltonian

H = −J
∑
〈i,j〉

SiSj −
∑
i

(hi +H)Si . (1)

The field H is the external field, 〈i, j〉 denotes nearest-
neighbour pairs, and the spin variable Si assumes the val-
ues ±1. In most discussions of the model, the probability
distribution of the random fields {hi} is a Gaussian

p(hi) =
exp

[
−h2

i /2R
2
]

√
2πR

(2)

of width R. Random fields at different sites are taken to
be uncorrelated.

The subsequent discussion is limited to a
2-dimensional system on a square lattice at zero
temperature. Initially all spins are taken to be pointing
down (Si = −1), except for one column of up-spins at the
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left boundary of the system, which, for convenience are
given an infinitely positive random field hi. The upper
and lower sides of the system are connected by periodic
boundary conditions. For a given value H of the external
magnetic field, successively all those spins are flipped
up that have a positive local field J

∑
j Sj + H + hi

and at least one flipped “up” neighbour (i.e. those spins
immediately neighbouring the successively propagating
interface of the growing cluster of up spins). For negative
or small positive values of the external field H, the
interface of up spins cannot proceed far and stops after a
small number of steps. For large positive H, on the other
hand, the propagating interfaces runs from left to right
through the entire system, leaving behind only small
domains of unflipped spins. For values H below some
critical value Hc(R), the order parameter m vanishes,
i.e., m = 0, while it becomes finite for H > Hc(R). If at
R > 0 the spin-flip avalanche proceeds percolation-like,
the transition from m = 0 to m > 0 is continuous with

m ' A(R)(H −Hc(R))β , (3)

with some prefactor A that depends on the width of the
random field distribution. If the invaded area has the same
critical properties as a spanning cluster in uncorrelated
site percolation (in 2-dimensions), as suggested in [2,8],
then β = βperc = 5/36 ' 0.139. If 2 is the lower criti-
cal dimension for the transition from percolation-like to
correlated depinning, we expect that this percolation-like
behaviour persists even for arbitrarily small randomnessR
on sufficiently long length scales and at sufficiently small
magnetic fields. On the other hand, if there is a phase tran-
sition to correlated depinning for some finite random field
strength Rc, then the magnetization is expected to display
a jump from 0 to some finite value m at at H = Hc(R) for
R < Rc. In this paper, we will argue for Rc = 0 and the
scenario of equation (3) for R > 0 and H sufficiently close
to depinning Hc(R) on sufficiently long length scales. If

H + hi + (2n− 4)J > 0 > H + hi + (2(n− 1)− 4)J ,

the local field at site i becomes positive (causing Si to flip
up) when the nth nearest neighbour flips up. It is useful
to define the probabilities

ρn =

(6−2n)J−H∫
(4−2n)J−H

p(hi)dhi (4)

that a spin flips as soon as n of its nearest neighbours
are flipped. Since we only allow spins connected to the
advancing interface to flip, (i.e. isolated spins remain un-
flipped), we absorb ρ0 into ρ1. For the advancement of
the avalanche, there is no difference between a site that
flips only when all four neighbours are flipped, and a site
that does not flip even with four flipped neighbours, so we
include in ρ4 all sites with hi < −H − 2J . Subsequently,
for convenience, we describe the system in terms of these
four probabilities instead of H/J and R/J , as done also
by other authors [18]. They span a three dimensional pa-
rameter space, since ρ1 + ρ2 + ρ3 + ρ4 = 1. The plane

−H+2J−H
h

0

p(
h)

(a)

ρ

ρ

ρ

1

2

3

−H
h

0
p(

h)
−H+2J−H−2J

 ρ     ρ  ρ     ρ
4          2     13

(b)

Fig. 1. The densities ρn for (a) small R/J and (b) large R/J ,
represented as areas under the Gauss-distribution for the ran-
dom field. In (a), the density ρ4 is so small, and its area is so
far to the left, that it is not shown in the figure.

spanned by H/J and R/J represents a cut through this
space. Changing the external field H for a given distribu-
tion of random fields corresponds to moving along a line
given implicitely by equation (4). There exists a critical
surface in the parameter space that separates the region
with m = 0 from the region with m > 0, which contains
the line Hc(R).

We begin by presenting some fundamental properties
of the two limiting cases of weak and strong disorder. Fig-
ure 1 illustrates the relation between the model param-
eters and the densities ρn. For small R/J (weak disor-
der), regions of a given n are wide compared to R/J , and
one or two neighbouring values of n dominate the system,
while for large R/J (strong disorder), the regions of given
n are narrow, and the two boundary regions for n = 1
and n = 4 dominate. Obviously, in the limit R/J → ∞,
the model corresponds to a site percolation system, where
ρ4 = 1 − ρ1. Knowing the value of the site percolation
threshold, ρc1 ' 0.59, we can immediately give an implicit
expression for the critical magnetic field Hc,

ρc1 =

∞∫
2J−Hc

p(hi)dhi, R/J →∞.

In the limit of small R/J , depinning occurs when H is
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Fig. 2. The phase boundary between up spins (large black
area) and down spins (remaining area). The down spins ar
colour coded depending on whether they flip as soon as one
(black), two (white), or three neighbours (grey) are flipped.

such that ρ2 is close to one, and ρ1 '
√
ρ3. To understand

this, consider a stable phase boundary between the spin
up and spin down regions, as drawn in Figure 2. The in-
vaded area (spin up) is indicated in black, as well as those
spins that will flip as soon as one of their neighbours is
flipped. The grey sites will only flip when three neighbours
are flipped and sit therefore in the corners of the bound-
ary. White sites will flip when two neighbours are flipped.
The depinning transition occurs when there exists no sta-
ble boundary that spans the system. Let us call a possible
boundary “pinning path”. The following construction of
a pinning path gives a good estimate for the relation be-
tween ρ1 and ρ3 at the depinning threshold: consider a
system with all spins down. Now start at the bottom of
the system at a bond that has no black right-hand neigh-
bour and make a step upward. The path can proceed in
the same direction as long as there are no black right-hand
neighbours. It can turn left anywhere (if this does not lead
to a black right-hand neighbour), but can turn right only
at grey sites. Since the path is not allowed to intersect
itself, and since it must ultimately arrive at the top end
of the system, the mean number of right turns must equal
the mean number of left turns. Thus, for each black site
that is avoided by a left turn, there must be a grey site,
where a right turn can be made. Since the density of black
sites is ρ1, the path has on an average 1/ρ1 opportunities
to turn left before encountering the next black site. After
the left turn, the probability of encountering a grey site
before encountering a black site, is

psurv = ρ3/(ρ3 + ρ1) . (5)

The path can survive when this probability, multiplied by
the number of turning opportunities, is not smaller than 1,
i.e., ρ3/ρ1(ρ3 + ρ1) ≥ 1, leading to

ρ3 = ρ2
1/(1− ρ1)

at the depinning threshold. For small values of R (weak
random fields), ρ3 and ρ1 are also small, and ρ3 ' ρ2

1 at
the depinning threshold. In [8], the relation ρ3 ∝ ρ

1.75±0.05
1

was obtained numerically (for a rectangular distribution

of random fields), however, an exponent 2 can also be rec-
onciled with their Figure 4, when the smaller slope in the
lower part of the plot is ascribed to finite-size effects. In
[19], the relation ρ3 ' (2/3)ρ2

1 was derived, which agrees
with the one given here apart from the prefactor. The au-
thors of [19] obtained their relation from the condition
that an initially straight interface along the first column
of sites can invade the same number of sites in the sec-
ond column of a 2-column system as in the third column
of a three-column system. The prefactor should therefore
change when more columns are taken into account. The
argument presented in this paper does not consider the
possibility of having two right (or left) turns in sequence,
which, however, occurs by a factor ρ3/(ρ1 + ρ3) less often
than alternating turns and makes therefore a negligible
contribution to the above calculation in the limit ρ1 → 0.
The argument also neglects possible correlations between
different pinning paths starting at the same initial point.
Taking these into account will probably change the pref-
actor. Irrespective of the prefactor, however, we can easily
see that the density ρ4 is negligible in the limit of small
disorder: a short calculation gives the approximate result
limR→0Hc(R) ' 2(2 −

√
2)J ' 1.172J (also derived in

[19]), leading to

ρ3 ' (R/2.94J) exp[−1.373J2/2R2]

and
ρ4 ' (R/7.95J) exp[−10.06J2/2R2]

at depinning threshold. Thus, the ratio ρ4/ρ
4
3 becomes ar-

bitrarily small for small disorder, which means that clus-
ters of four grey sites forming a 2 × 2-square occur far
more often than isolated sites that do not flip with three
flipped neighbours. Since both play the same role in the
system by blocking an avalanche even when surrounded
by it on three sides, and since their size difference is irrel-
evant on long length scales, the neglection of ρ4 does not
change any properties of the system in the limit of small
disorder.

To conclude this section, let us note that in addition
to pinning paths that span the system and separate the
invaded from the non invaded area, there exist pinning
paths that are closed loops, delimiting unflipped domains
within the invaded region.

3 Numerical results

Earlier numerical studies [2,8] used a quadratic system
of L2 sites in which the magnetic field H was increased
incrementally, allowing the system to relax after each (adi-
abatic) increase. The system size dependent critical field
Hc(R,L) at which the invading spin-up phase first reached
the right boundary of the system, was seen to converge
towards a constant value Hc(R) as L was increased. In-
formation about the critical field, the fractal dimension
of the invading cluster, and its perimeter were obtained
upon approaching the depinning threshold from below.

The present work, in contrast, is mainly concerned
with the behaviour of the fraction m of flipped spins above
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Fig. 3. The invaded area (black) for L = 400 in the low
disorder regime (ρ4 = 0), slightly below depinning, with (a)
ρ3 = 0.2 and ρ1 = 0.43 < ρc1(0.2) ' 0.4345 and (b) ρ3 = 0.05
and ρ1 = 0.2236 < ρc1(0.05) ' 0.226. L is the linear system
size in the vertical direction. Roughly speaking, in the low dis-
order regime, smaller ρ3 corresponds to smaller disorder, and
(ρ1 − ρ

c
1) corresponds to (H −Hc(R)).

the depinning threshold H > Hc(R), focusing on the ques-
tion whether m goes to zero continuously or discontinu-
ously at depinning, and on the value of the critical ex-
ponent β. For this purpose, the external magnetic field
(or, equivalently, the densities ρn) was set to a fixed value
throughout a simulation run, and the interface was allowed
to advance in a system of height L until it either came to a
halt, or until it reached a cutoff distance which we chose to
be ca. 10.5 L. Memory was allocated dynamically, and the
system was updated by flipping all spins with positive lo-
cal field along the interface. The following quantities were
measured for various values of the system height L, and
averaged over up to 250 realizations of the disorder: (i)
the position of the most advanced and most retarded site,
and the mean position of the interface, as well as the in-
terface length at the moment where it came to a stop (if
it did so before running over the maximum allowed dis-
tance). (ii) The fraction of spins flipped by the avalanche
(disregarding the first L/2 columns, where the interface
had not yet reached its stationary behaviour, and the last
columns that were only partially invaded by the interface).
(iii) The size distribution of the patches of unflipped spins
left behind by the advancing interface. Before evaluation,
these patches were allowed to relax, which is realistic for
a magnetic system, but not for fluid invasion in a porous
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Fig. 4. Probability density for the position of the most ad-
vanced site of the pinned interface, for ρ3 = 0.05 and ρ1 =
0.226 ' ρc1(0.05). The collapse of the curves indicates that
ζ = 1.
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Fig. 5. Probability density for the position of the most re-
tarded site of the pinned interface, for ρ3 = 0.05 and ρ1 =
0.226 ' ρc1(0.05). The collapse indicates that ζ = 1.

medium, where trapped regions cannot shrink. To study
the low disorder regime, in our simulations we set ρ4 to
zero and ρ3 to some small fixed value ρ3 = 0.2, 0.1, or 0.05.
ρ1 was chosen close to the depinning threshold ρc1(ρ3). The
snapshots in Figure 3 show two pinned invasion patterns
for two different values of the disorder (ρ3), at ρ1 slightly
below the respective depinning threshold ρc1(ρ3).

Two characteristic trends can be discerned for decreas-
ing ρ3 (i.e. decreasing random field strengthR): the length
of straight front segments increases, and the number of un-
flipped domains in the invaded area decreases. The first
feature was explained in the previous, and the second fea-
ture will be explained in the following section. First, how-
ever, let us give more details of the simulation results.

3.1 Properties of the interface (ζ = 1 and df = 4/3),
and determination of the critical value ρc

1(ρ3) in the
low disorder regime

Figures 4 and 5 show the probability density p(xmax, L)
for the position xmax and xmin of the most advanced
and most retarded site of the interface for ρ3 = 0.05 and
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Fig. 6. The length of the interface l as function of L, for
ρ3 = 0.1 and ρ1 =0.315 (circle), 0.317 (square), 0.318 (dia-
mond), 0.319 (triangle up), 0.32 (plus), 0.322 (triangle down),
and 0.325 (×). The straight line is a power law fit to the
ρ1 = 0.317 ' ρc1(0.1) data, with an exponent 1.332.

ρ1 = 0.226 ' ρc1(0.05), scaled by the system height L. At
depinning one expects the scaling behaviour p(xmax, L) ∼
f1(xmax/L

ζ) with a universal roughness exponent ζ and a
universal scaling function f1. Analogously, p(xmin, L) ∼
f2(xmin/L

ζ) with a universal scaling function f2. The
curves for different values of L collapse nicely, indicating
that the system is indeed at the depinning threshold, i.e.,
ρ1 = ρc1(ρ3), and ζ = 1.

For larger values of ρ1, (i.e. H > Hc(R)) the peak
of the curves moves to the right with increasing L, and
a nonvanishing fraction of all interfaces do not get stuck
before reaching the cutoff distance 10.5L (especially for
large values of L), since the system is above the depinning
threshold. For smaller values of ρ1, i.e. below the depin-
ning threshold, the percentage of interfaces that remain
attached to the first column increases with increasing L.
Other values of ρ3 give similar results. At depinning, one
expects the mean thickness of the interface, defined as the
number of columns spanned by the interface after it got
stuck, to also scale as Lζ . For the parameter values of
Figures 5 and 4 this was verified with ζ = 1. Once the
interface has reached this mean asymptotic thickness of
the order L, it becomes pinned with equal probability at
any moment. This is reflected by the exponential tails of
the scaling functions in Figures 4 and 5.

Figure 6 shows the mean length l of the pinned in-
terface as function of L for different values of ρ1, at
fixed ρ3 = 0.1. This length is the number of flipped
spins that constitute the nearest-neighbour connected in-
terface, i.e. the number of sites of the pinning path de-
scribed in Section 2. Only interfaces with xmin > L/2
and xmax < 10.5L were considered. The expected scaling
form is l ∼ Ldfg((ρ1−ρc1(ρ3))L1/ν) with universal scaling
function g, correlation length exponent ν, and fractal di-
mension df . At the critical threshold ρ1 ' 0.317 ' ρc1(0.1)
the points do indeed follow a power law. For nearby val-
ues of ρ1, the critical behaviour is only visible for L < ξ
where ξ ∼ ((ρ1 − ρc1(ρ3))/ρ1)−ν is the correlation length.
For larger L it crosses over to a different behaviour (lin-
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x

0.3

0.8

0.4
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0.6

0.7

g(
x)

Fig. 7. The scaling function g(x) for the interface length. The
symbols are the same as in the previous figure. The straight
line is a power law with exponent −1/4.

ear in L in the case of ρ1 > ρc1). The straight line in the
figure is a power-law fit to the critical data set, with ex-
ponent df = 1.332±0.007. Simulations for other values of
ρ3 give the same exponent df = 1/ν = 4/3. For a perco-
lation cluster, the exponent df is 7/4 [17]. The exponent
4/3 is retrieved, however, for a percolation cluster hull,
when one allows steps to the next-nearest neighbours as
well, thereby bridging the most narrow throats [17]. Since
in our model sites with more flipped neighbours are more
likely to flip also, narrow throats will be bridged with a
certain probability, thus producing the exponent 4/3. The
same exponent df = 4/3 characterizes also the fractal
dimension of a self-avoiding random walk. This analogy
becomes apparent in the limit of weak randomness (small
ρ3), where interfaces can be constructed by finding pin-
ning paths that connect “grey” sites, as discussed in sec-
tion 2 above. On sufficiently large scales, such paths are
essentially self-avoiding random walks.

Figure 7 shows the collapsed data of Figure 6. On the
horizontal axis, the scaling variable x ≡ (ρ1− ρc1(ρ3))L4/3

is plotted, and on the vertical axis l/L4/3, which is ex-
pected to be identical to the scaling function g(x) defined
above. One can see that the scaling function is constant
for small x, and decays with x−1/4 for large x. This decay
corresponds to a linear dependence of l on L. The data
points to the largest value of ρ1 are already outside the
scaling regime. The scattering of the other points is due
to not too good statistics.

3.2 The exponent β

Figure 8 shows the order parameter m as function of
(ρ1 − ρc1(ρ3))/ρ1 for ρ3 = 0.2, 0.1, and 0.05. Only those
data points are shown that are not affected by finite-size
effects. (When finite-size effects are present, the fraction
of flipped spins decreases with increasing system size. The
reason is that only the area behind the interface was eval-
uated (not taking into account the first L/2 columns),
which cannot contain unflipped regions larger than L and
has therefore less unflipped spins for smaller system size.)
With the maximum system height L = 3200 used in the
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Fig. 8. The fraction of spins flipped by the avalanche as func-
tion of the distance from the critical density ρc1(ρ3), for ρ3 = 0.2
(solid), 0.1 (dotted), and 0.05 (dashed) for a system height up
to L = 3200. The measured data points sit in the center of the
error bars, and the error bars have a length of two times the
standard deviation. The lines are a power-law fits to the data,
with the exponents β = 0.124, 0.096, and 0.076. (Note that for
percolation βperc = 0.139.)

simulations, the depinning threshold could not be ap-
proached closer than shown in Figure 8. As the log-log
plot shows, the data points can be fitted within the error
bars by a power law

m ∝ ((ρ1 − ρ
c
1(ρ3))/ρ1)β (6)

with an exponent 0.076 ≤ β ≤ 0.124 that takes decreasing
values for decreasing ρ3 and is smaller than the percola-
tion value βperc = 5/36 ' 0.139. Note that these results
have to be treated with caution: (i) the data points cover
less than a decade. (ii) Although the fitted power laws lie
within the error bars, there appears to be a slight increase
in slope with decreasing (ρ1−ρc1(ρ3))/ρ1 for all three data
sets. (iii) The data are taken relatively far away from the
critical point m = 0, in fact probably already outside of
the scaling regime. (Attempts to obtain scaling collapses
of the data using the general scaling form given above
did not work very well.) The exponent β, is actually only
defined near m = 0 as as

[d lnm/d ln((ρ1 − ρ
c
1(ρ3))/ρ1)]m=0 .

(iv) The simulated system is rather small. It is known
from other nonequilibrium systems with quenched disor-
der [11] that finite size effects tend to be rather large
and result in somewhat shifted values for the critical
exponents. Curiously, in [11] collapses for the magneti-
zation curves seemed also to be the hardest to obtain.
(v) With increasing (ρ1 − ρc1), the exponent β may cross
over to some other value β′. In fact, our scaling theory
(see Sect. 4.3) suggests that in the low disorder regime,
very close to depinning, ((ρ1 − ρc1(ρ3))/ρ1 � (ρc1)x/z,
where x/z is a universal exponent estimated in Sect. 4.3),
one has m ∼ ((ρ1 − ρc1(ρ3))/ρ1)βperc with βperc = 5/36;

and further away ((ρc1)x/z � (ρ1 − ρc1(ρ3))/ρ1 ), one has
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Fig. 9. Size distribution of unflipped regions for ρ3 = 0.2 and
ρ1 = 0.4385, 0.44, 0.442, 0.445, and 0.45 (from right to left).
ρc1(ρ3 = 0.2) = 0.4345 ± 0.005. The inset shows a collapse
of these data, plotting sτn(s) versus ((ρ1 − ρc1)/ρ1)σns with
τ = 1.85, σn = 1.8, and ρc1 = 0.437.

m ∼ ((ρ1 − ρc1(ρ3))/ρ1)β
′

with β′ = 0. Such a scenario
would explain the apparent decrease of β with decreas-
ing disorder. Below, in Section 4, we will give analytical
arguments that for small enough ρ1 − ρc1 the exponent
β is identical to the percolation exponent. Furthermore,
using a test simulation of another system for which β is
known to be equal to βperc, we will show that corrections
to scaling tend to bias the numerically observed value for
β towards a “wrong” value β < βperc.

Nevertheless, a few valid conclusions can be derived
from the numerical data. First, at least for m > 0.5 there
seems to be no tendency to approach a finite saturation
value of m. If this tendency continues for smaller values of
m, it indicates a continuous depinning transition. Second,
the critical interval ρ1−ρc1(ρ3), for which m is smaller than
some threshold value (e.g., 0.5), becomes smaller with de-
creasing ρ3. Our conclusion will be that for sufficiently
small ρ1 − ρc1 the exponent β does not decrease with ρ3,
but that the amplitude of the power law has to increase
with decreasing ρ3. Below, the size of the critical region
will be estimated using two different arguments, leading
to a power-law divergence of the amplitude as ρ3 → 0.
Third, using finite-size scaling, the fractal dimension of
the invaded region can be estimated. The result is com-
patible with the percolation value Df = 91/48 ' 1.896,
as found earlier in [2,8].

3.3 The unflipped regions left behind

Figure 9 shows the size distribution n(s) of unflipped do-
mains behind the interface for ρ3 = 0.2 and different val-
ues of ρ1 close to ρc1. The size is defined as the number
s of unflipped spins within the domain. Unflipped spins
that are nearest or next-nearest neighbours are defined to
belong to the same domain. (This definition allows for sys-
tem spanning clusters of unflipped spins coexisting with
system spanning clusters of flipped spins at the depin-
ning point). Near depinning we tested the scaling ansatz
n(s) ∼ 1/sτfn(((ρ1 − ρc1)/ρ1)σns) with fn an appropriate
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scaling function. This ansatz seems to give a collapse for
τ = 1.85, σn = 1.8, and ρc1 = 0.437 (see inset). This ap-
parent scaling behaviour, however, cannot hold for very
small (ρ1 − ρc1)/ρ1, since the integral

∫∞
1
sn(s)ds must be

normalized to 1, allowing either for a scaling form with
τ = 2, or for τ < 2 with no universal scaling behaviour.
We can rule out the possibility τ > 2, since the simula-
tions as well as the analytical arguments below suggest
that the total area of small unflipped regions decreases at
the expense of large unflipped regions as ρ1 approaches
ρc1. A value τ > 2, in contrast, would imply that the area
fraction covered by large unflipped regions is negligible.

Indeed, with decreasing distance from the critical value
ρc1(ρ3), the curve becomes flatter and does not converge
to an asymptotic curve with finite cutoff. This behaviour
can be interpreted as another indication that the order
parameter vanishes when the critical point is approached.
If it did not vanish, the size distribution of unflipped do-
mains would approach some limit distribution with a fi-
nite cutoff at the critical point. Why this does not happen
for a vanishing order parameter, is best illustrated for the
site percolation limit of large disorder, ρ1 = p, ρ4 = 1− p.
There, the invaded area is identical (except for the first few
columns) to the infinite percolation cluster. Clearly, as p
is decreased towards its critical value pc ' 0.59, larger and
larger branches of the infinite percolation cluster become
disconnected from it and are therefore no more flipped.
All the unflipped domains formerly contained within this
branch fuse, and larger unflipped domains are formed at
the expense of smaller domains.

4 Analytical results

4.1 The exponent β

The simulation results shown in Figure 8 give a value
of β, somewhere between 0.076 and 0.124, depending on
ρ3. The obtained range does not include the percolation
value, which is βperc = 0.139. As argued in Section 3.2,
the data however are not conclusive, and a universal value
β = βperc (or a close value) cannot be ruled out. A value β
different from βperc, would mean that any deviation of the
densities ρn from the percolation values should be a rel-
evant perturbation of percolation theory. In other words,
the conditional flipping of spins depending on the number
of flipped neighbours (i.e. ρ2 6= 0, ρ3 6= 0), should change
the universality class. The case that β would depend on
ρ3 is highly unlikely. It would imply that even the extent
to which spins are flipped as function of the state of their
neighbours, would affect the value of the critical exponent.

In the following we give several points on the critical
surface apart from ρ1 = 0.59..., ρ4 = 1 − ρ1 where we
can show by an analytic mapping onto percolation mod-
els that β = βperc. These results will provide a strong
case that β is indeed universal. One such point is given by
ρ1 = pb, ρ2 = pb(1− pb), ρ3 = pb(1− pb)2, ρ4 = (1− pb)3,
with pb = pcb = 1/2 being the critical threshold for bond
percolation on a square lattice. In order to understand
this, consider a bond percolation problem, where a pair
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Fig. 10. Fraction of invaded sites for bond percolation with
L = 3200, from a simulation with ρ1 = pb, ρ2 = pb(1−pb), ρ3 =
pb(1− pb)

2, ρ4 = (1− pb)
3, with pb = pcb = 1/2. The solid line

is a power law fit with the exponent β = 0.1296.

of neighbouring sites is connected by a bond with prob-
ability pb. We start with a row of up-spins at one end
of the system and allow the avalanche to proceed to any
site that can be accessed via open (i.e. existing) bonds.
Some sites are invaded at the first nearest-neighbour con-
tact with the spin-flip avalanche, others at the second
contact, still others at the third contact, and the rest
not even at the third contact. Obviously, the proceeding
avalanche cannot distinguish whether it moves through a
bond percolation system or a system with sites of different
“colours” that are assigned according to the probabilities
ρn (Eq. (4)). Clearly, the invaded bonds will form a bond
percolation cluster. Since bond percolation can be mapped
onto site percolation on a different lattice [17], and since
the site percolation critical exponents do not depend on
the lattice type, the number of invaded bonds diverges as
nb ≈ C(pb− pcb)

βperc . In [20], it is proven that the number
of invaded sites in a bond percolation problem increases
with the same exponent as the number of invaded bonds.
Consequently, the order parameter exponent is identical
to βperc for the above choice of the ρn.

Figure 10 shows the number of invaded sites as func-
tion of pb−pcb. The simulations were performed by setting
ρ1 = pb, ρ2 = pb(1− pb), ρ3 = pb(1− pb)2, ρ4 = (1− pb)3,
with pb = pcb = 1/2 in the previous simulations. The
solid line is a power-law fit to the data, with an expo-
nent β = 0.1296, which is smaller than the true exponent
βperc = 5/36 ' 0.139 which we obtained from analyti-
cal arguments. This suggests that corrections to scaling
modify the asymptotic power law to an apparently differ-
ent power law further away from the critical point. Not
shown in the figures is the result for the fractal dimension
of the interface, which is again 4/3, as in the previous
simulations. We therefore have strong reasons to believe
that the bond percolation case discussed in this subsection
belongs to the same universality class as the simulations
described in the previous section.
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For other special values of the densities ρn, mappings
on various other types of percolation are possible. For ex-
ample, site-bond percolation (i.e., bond percolation where
only the fraction ps of all sites are accessible) interpolates
between site percolation and bond percolation and is ob-
tained for the densities ρ1 = pspb, ρ2 = pspb(1 − pb),
ρ3 = pspb(1− pb)2, and ρ4 = ps(1− pb)3 + (1− ps). Map-
pings on short-range correlated bond percolation are also
possible, where the probability that a bond is open de-
pends on the number of bonds pointing to the same site
(in this situation, bonds must be given an orientation).

To summarize, there is strong evidence that the crit-
ical exponent β is indeed universal and identical to its
percolation value 5/36.

4.2 The size of the critical region

As shown in Figure 8 and mentioned in Section 3.2, the
parameter interval during which the order parameter in-
creases from zero to a given finite value becomes smaller
with decreasing disorder strength. Together with the re-
sults of the previous section, this suggests the form (for
(ρ1 − ρc1)/ρ1 � (ρc1)x/z )

m ' Cρ−κ3 ((ρ1 − ρ
c
1(ρ3))/ρ1)β , (7)

with β = βperc = 5/36 ' 0.139, and with some expo-
nent κ. In the following, we will first derive an estimate
of the size of the critical region and of κ based on the
understanding that the invaded area is a coarsened perco-
lation cluster, and then a different estimate that is based
on a study of the unflipped domains. Both estimates agree
within 12 percent, suggesting that the true value is of the
same order as the estimated values.

4.2.1 Arguments from percolation theory

From the previous section, we know that the invaded area
can be viewed as an infinite percolation cluster with ad-
ditional sites added to it. Since a spin-flip avalanche can
only be stopped by “grey” sites that occur with a proba-
bility ρ−1

3 , we assume now that to each site of the infinite
percolation cluster all sites within a distance ρ−1

3 are also
flipped. This assumption is supported by the result in [8]
that the “finger width” diverges roughly as ρ−1

3 . Clearly,
when this distance becomes larger than the percolation
correlation length ξ, practically all spins are flipped, and
the system is no more in the critical region. We therefore
find

((ρ1 − ρ
c
1(ρ3))/ρ1)−ν ∝ ρ−1

3

at the boundary of the critical region, with ν = 4/3 known
from percolation theory, leading to a size of the critical
region

((ρ1 − ρ
c
1(ρ3))/ρ1) ∝ ρ3/4

3 . (8)

At the boundary of the critical region, m has some finite
value, and setting m constant in equation (7), we find
κ/β = 3/4, or

κ = 3β/4 = 5/48 ' 0.104 . (9)

4.2.2 Arguments using unflipped domains

Let us now consider the unflipped domains left behind by
the infinite avalanche, and let us measure all distances in
units of the “step size” l ' 1/ρ1. The probability that a
(pinning) path of a given step number k has its final point
within unit distance l from the initial point is independent
of the step size l for large l. Since there are of the order
l2 sites within distance l from the initial point, the prob-
ability that a path of k steps forms a closed loop vanishes
as l−2, which is proportional to ρ3. On the other hand,
there is a cutoff 1/(1− psurv/ρ1) to the number of steps
of a pinning path (see Eq. (5)), leading to

kmax ∝ [(ρ1 − ρ
c
1(ρ3))/ρ1]−1

for small ρ3. As long as there exists only small and rare un-
flipped domains, the system is beyond the critical region.
The critical region can be characterized by the condition

that the distance covered by a pinning path, k
3/4
max, be-

comes of the same order as the distance between unflipped
domains. Then, the picture of rare independent unflipped
domains is no longer valid, since these domains can be
connected by pinning paths, leading to a divergence of
the size of unflipped domains. The above condition reads

k3/4
max ∝ l ∝ ρ

−1/2
3 ,

and gives the following estimate of κ by again putting
m = const and using the assumption of equation (7)

κ = 2β/3 = 5/54 ' 0.093 . (10)

This argument also shows that the size distribution of un-
flipped domains does not converge towards a fixed func-
tion with finite cutoff for ρ1 → ρc1(ρ3), but rather that
small unflipped domains become connected to form large
unflipped domains, as observed in the simulations.

4.3 Scaling theory

The results for the order parameter and the unflipped do-
mains lead to a scaling theory that is similar in spirit to
the one proposed in [21] for the equilibrium random-field
Ising model in two dimensions at low disorder. We intro-
duce the scaling variable

h = (ρ1 − ρ
c
1)/ρ1,

which measures the distance from the depinning threshold
and is roughly equivalent to (H/R−Hc/R), and

t = ρc1 ,
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which is a measure for the disorder strength and is to
leading order

ρc1 '
√
ρ3 ∝ exp[−0.343J2/R2] .

The characteristic length scale t−1 is the length of straight
interface segments. The correlation length ξ is most natu-
rally identified with the diameter of the largest unflipped
domain, weighted by the density of these domains, and
can be expected to scale with some power of t. In equilib-
rium, the correlation length scales also as exp[CJ2/R2],
with a constant C different from the depinning problem.

Under coarse graining, the scaling variables change to

h′ = bxh, t′ = bzt.

We assume that the exponent x is x = d − d/2 = 1, be-
cause the renormalized external field H and random fields
{hi} are given by the sum of the corresponding fields in
the cell, leading to dimensions d and d/2 respectively [21].
Here, the main assumption is that we can apply equilib-
rium rescaling under coarse graining to this essentially
non-equilibrium problem. The reasoning is that in the
limit of low disorder almost all (except for a vanishing
fraction as R → 0) coarse grained “block spins” flip co-
herently thereby optimally lowering their local energy, and
obeying essentially the same rules as single spin flips on
shorter length scales. The exponent z will be related below
to the exponent κ. The correlation length ξ and the order
parameter m transform under coarse graining according
to

ξ′ = ξ(t′, h′) = b−1ξ(t, h)

and
m′ = m(t′, h′) = bym(t, h)

with y = 0 (since all spins within a box of size b2 are
parallel at t = 0), leading to

ξ ' t−1/z ξ̃(h/tx/z)

and
m ' ty/zm̃(h/tx/z).

As is seen from Figure 11, on long length scales the sys-
tem flows to the percolation fixed point at infinite dis-
order. The zero disorder fixed point and the percolation
fixed point are connected by the depinning critical line
which is described by the correlation critical fixed points
on sufficiently long length scales. In the following we use
information about the percolation fixed point to extract
the asymptotic behaviour of the scaling functions as well.
For h� tx/z, we expect

ξ̃ ∼ (h/tx/z)−ν

with ν = νperc = 4/3, or

ξ ∝ h−νt(xν−1)/z .

For smaller disorder, ξ is also smaller (for the same value
of h), in agreement with our previous finding that the
width of the critical region becomes smaller.

H(R)

H

R
Percolation

A

R

H(0)c

c

B
Fig. 11. Sketch of the flowdiagram for the order parameter.
There are 4 fixed points in this diagram: at R = 0, H = Hc(0)
(with Hc(0) = 1.172J for the model discussed here), which
is the zero disorder fixed point discussed in this paper; at fi-
nite H, R → ∞, which is the percolation fixed point; and at
H = ±∞, R = 0 (A and B), which attract all the flow above
respectively below the critical line. These two fixed points cor-
respond to a completely flipped system and to a system that
is not invaded at all. The thick line marked Hc(R) is the de-
pinning line. The arrows indicate the direction of flow under
coarse graining. The diagram explains why systems very close
to Hc(R) are dominated by percolation critical exponents on
long length scales, as discussed in the paper.

From the previous section we know that for h� tx/z

m̃(h/tx/z) ∼ (h/tx/z)β

with β = βperc. This gives for h� tx/z

m ∼ t(y−βx)/zhβ

and the scaling relation

κ = (βx− y)/2z.

Inserting the known values for the exponents y, x, and β,
the relation between κ and z becomes

z = 5/72κ .

The two above estimates for κ give then z = 4/7 or z =
9/14.

In the opposite limit h � tx/z, the order parameter
saturates at 1, i.e.,

m̃(h/tx/z) ∼ (h/tx/z)β
′

with β′ = 0. For intermediate values of h/tx/z, the scaling
function m̃ interpolates between the two limits. The ex-
ponent β′ is also observed for faceted growth, where never
more than two “colours” are present, and where depinning
occurs at ρ2 = 1. In the flow diagram, faceted depinning
occurs at the left-hand fixed point, and the flow follows
the perpendicular axis.

The correlation length ξ is close to zero for h � tx/z,
since essentially no unflipped domains are left behind.
This means that the scaling function ξ̃ becomes propor-
tional to (h/tx/z)−ν

′
, with ν′ =∞.
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5 Conclusions

The results of this paper confirm that 2 is the lower critical
dimension for the transition from percolation-like to con-
ventional depinning of a domain wall in the random-field
Ising model. This conclusion is based on the numerical ob-
servation that the order parameter (the fraction of flipped
spins) vanishes continuously as the depinning threshold is
approached, even in the limit of very small disorder. Nu-
merical results as well as analytical arguments show that
the size distribution of unflipped domains left behind by
the spin-flip avalanche becomes flatter closer to the de-
pinning threshold, not allowing for a nonvanishing order
parameter at the threshold.

Furthermore, this paper supports the hypothesis that
the order parameter exponent β is the same as in uncor-
related site percolation. Since numerical data are not con-
clusive and rather indicate an exponent β that depends on
the disorder strength, an explicit mapping of the infinite
avalanche of the depinning problem onto an infinite clus-
ter in percolation theory is performed for several distinct
parameter values. The reason why the asymptotic value of
the critical exponent β cannot be seen in the simulations is
that the width of the critical region shrinks to zero as the
disorder strength vanishes. Analytical arguments in this
paper estimate the value of the exponent that character-
izes the width of the critical region, and lead to a scaling
theory that relates this exponent to other exponents.

As argued in [5], depinning in the random-field and
random-bond Ising models belong to the same universal-
ity class, and the non-equilibrium random bond and ran-
dom field Ising model have the same symmetries near the
critical point (for the same reasons as given in [22]), we
therefore expect that the results of this paper are also
valid for the random-bond Ising model. In contrast, the
equilibrium critical behaviour of the two models is differ-
ent.

The question of the universality of the exponent β oc-
curs also in the context of bootstrap and diffusion perco-
lation [23], where all unoccupied sites of a site percolation
problem that have a certain number of occupied neigh-
bours are also occupied. Recently, evidence was found that
the exponent β is universal in two dimensions [24].

The scaling theory presented in this paper discusses
only the order parameter and correlation length in the
bulk, after the spin-flip avalanche has transversed the sys-
tem. The scaling behaviour of the front is somewhat sim-
pler for small disorder, since for small t and h the corre-
lation length is identical to the length of a pinning path,
which is proportional to

(lkmax)3/4 = (th)−3/4,

leading to a scaling variable th. A pinning path is essen-
tially a self-avoiding random walk. Therefore the fractal
dimension of the front is 4/3, which is different from the
percolation value 7/4. However, close to the site percola-
tion fixed point (i.e. for large disorder), a crossover be-
tween the two exponents should be observed. Curiously,
this implies that the flow diagram for the correlation

length of the front shows a flow from the percolation fixed
point to the t = h = 0 fixed point, which is the opposite
direction to the flow in Figure 11. A scaling theory for the
front should therefore be performed in the neighbourhood
of the percolation fixed point, which was not the focus of
this paper. Other front properties like the size distribu-
tion of avalanches below the depinning threshold and the
velocity of the front were not studied in this paper either
and have still to be determined.

It is certainly possible to generalize the scaling the-
ory of this paper for the transition from percolation-like
to conventional depinning to the neighbourhood of two di-
mensions by performing a 2+ε expansion, in a way similar
as in [21] for the equilibrium model. An expansion around
the upper critical dimension is a bigger challenge. Since in
dimensions larger than 2 the disorder strength is not van-
ishingly small at the phase transition between the two dif-
ferent modes of depinning, the neglection of spontaneous
spin flips away from the domain wall is realistic only under
certain circumstances, for example for fluid invasion, for
magnetic samples in a gradient field, or in the presence of
certain long range interactions [22]. If, on the other hand,
one includes these spontaneous spin flips, one arrives at a
hysteresis model for which an expansion around the upper
critical dimension 6 was successfully performed in [22].
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